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1. Introduction 

Nano-engineered optical metamaterials (OMMs) have intrigued many researchers due to their novel properties. For 
example, negative index metamaterials (NIMs) pertinent to perfect imaging [1], do not exist in nature; therefore, 
they have to be designed and fabricated. Normally, the design of a periodic NIM begins with a ‘basis unit cell’ 
providing specific properties to the entire array. A basis 2D NIM unit cell as defined in Ref. [2] and shown in Fig. 1 
is used as a starting point, and then adjusted to achieve the best performance. The material properties are limited by 
the availability of elementary materials; therefore only the dimensions of the basis structure are tuned to find the 
best performance according to a particular figure of merit. Simulations of different designs are performed using 
numerical solvers based on periodic finite element-boundary integral method (PFEBI) and spatial harmonic analysis 
(SHA). Three stochastic optimization algorithms, namely simulated annealing (SA), genetic algorithm (GA) and 
particle swarm optimization (PSO), then use these solvers to evaluate different design geometries to locate an 
optimum solution. Because GA is better suited for discrete optimizing parameters it uses the PFEBI solver with 
uniformly discretized domain for the electromagnetic simulations. SA and PSO utilize continuous parameters and 
rely on the SHA solver. 

Fig. 1 The unit cell of the NIM geometry
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2. Numerical solvers 

Periodic Finite Element-Boundary Integral Method (PFEBI) 
The PFEBI method is a modified version of the finite element-boundary integral (FEBI) method where periodic 
boundary conditions have been imposed [3]. In this technique, equations for the unknown electric or magnetic field 
values inside the computational domain are obtained from the differential form of Maxwell’s equations. On the 
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computational boundary, the unknown fields are expanded in terms of known basis functions. The field values from 
these two computational domains are coupled through integral equations on the boundary. 

Spatial Harmonic Analysis (SHA) 
SHA is a fast semi-analytic method for simulation of periodic structures [4]. It is based on the expansion of the 
electromagnetic fields in terms of plane waves as given by Bloch’s theorem. The structure to be simulated is divided 
into layers such that the material properties within a layer are invariant along the direction perpendicular to the layer. 
The eigenmodes within each layer are expressed as a summation of different plane wave modes as given by Bloch’s 
theorem. The material properties for each layer are expressed as a Fourier series. These substitutions convert the 
Maxwell’s equation into an eigenvalue equation which can be solved to yield the eigenmodes and corresponding 
eigenvalues for each layer. This is followed by application of boundary conditions at the interfaces between the 
layers to yield the electromagnetic fields throughout the structure. 

3. Optimization algorithms 

Simulated Annealing (SA) 
SA is formally built upon a physical analogy of cooling crystal structures which spontaneously attempt to arrive at a 
global minimum [5]. In SA an objective function F  is minimized by adjusting a set of parameters. Starting from 
some point in the parameter space, random move attempts are generated, evaluated, then accepted or rejected 
according to the change of the objective function F. The acceptance probability is F Tp e−Δ=  for  and 0FΔ > 1p =  
otherwise. The control variable T (“temperature”) is initially set to a high value and then decreased gradually. 

Genetic Algorithm (GA) 
The GA is based on the principles of natural selection and survival-of-the-fittest in genetic evolution [6]. First, an 
initial population is formed where each of the ‘individuals’ corresponds to a specific realization of the design to be 
optimized in a given parameter space. A cost (to be minimized) or a fitness (to be maximized) is assigned to each 
individual to quantify its performance. Best-performing individuals in a generation are allowed to ‘mate’ to produce 
the next generation of individuals, and a ‘mutation’ operator is typically introduced to prevent the fitness from 
converging to local extrema rather than to the global extremum. This process is repeated until convergence is 
achieved.  

Particle Swarm Optimization (PSO) 
Swarm intelligence is one of the latest nature-based stochastic optimization techniques, which was recently 
introduced by Kennedy and Eberhart [7]. Although the driving force behind the GA is competition, the driving force 
in PSO is cooperation. In a PSO process, particles fly through the multi-dimensional search space with their own 
position and velocity vectors. A collection or swarm of particles is defined, where each particle is assigned a random 
position in the parameter space. Based on the fitness (or cost) of the position, each particle moves via a velocity 
operator until convergence is achieved.  

4. Results and Discussions 

Four of the geometrical parameters for the NIM are constrained to vary between a minimum and a maximum value 
(i.e. 50 , , 500nm p nm≤ ≤ 20nm w p≤ ≤ 20 60nm t nm≤ ≤ , and 20 100nm d nm≤ ≤ ). The two remaining parameters 

 and  are both fixed at 20nm. This choice of  is made to guarantee that the silver used in the NIM forms a 

continuous layer. The figure of merit (FoM) is defined as 
dT fT fT

( )max /FoM n n
λ

′ ′′= − , where n n  is the refractive 

index, and we are interested in the wavelength range 

in′= + ′′

400 800nm nmλ≤ ≤  with a 10nm interval. 

SA: Details and Results 
The objective function used in SA is defined as 10Obj FoM= −  since SA requires a positive objective function. Its 
evaluations were performed by the 2D SHA method. The optimum design obtained by SA is 

, , , and 323.6p nm= 181.6w n= 40.2t nm= mm 80.1d n=  with the effective index  at 0.83 0.22n i= − +
770nmλ = , corresponding to a figure of merit 3.79.  

GA: Details and Results 
The fitness/cost function used in the GA is defined by fitness FoM= and the population size is 6. Fitness 
evaluations for GA are performed using the PFEBI method. The PFEBI analysis has a basic brick element size of 

, guaranteeing that an element edge would not exceed 20 20 20nm nm nm× × /10λ  at any wavelength within the 
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simulation range. The optimum geometrical parameters in this case are found to be ,314.3p nm= 176.8w nm= , 
, and d . The corresponding wavelength is 770nm and the equivalent index of refraction is 

. Convergence to the maximum fitness of 3.25 is achieved at generation 87.  
42.9t = nm nm= 72.1

0.810 0.249n i= − +

PSO: Details and Results 
The cost to be minimized in PSO is . In order to make a fair comparison with the GA, the PSO is 
started with a swarm of 6 particles and is run for 100 iterations. Fitness evaluations for the PSO are performed by 
the 2D SHA method. PSO converges to the minimum cost of -3.23 achieved at a wavelength of 780nm with only 35 
iterations. The optimized parameters are 

cost FoM= −

328.7p nm= , 168.0w nm= , 45.8t nm= , and .  68.0d n= m
The above results show that the optimum designs obtained by the three optimization algorithms are similar, 

although not exactly the same. Their effective refractive indices (Fig. 2) also confirm this similarity: the three curves 
almost overlap with each other, featuring a negative index of refraction from 750nm to 810nm. 

 

                                 
Fig. 3 Comparison of convergence properties of the 

SA, GA, and PSO optimization methods
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Fig. 2 The effective refractive indices of the optimized 
designs 
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Convergence curves for the GA, PSO, and SA methods for this particular optimization problem are compared in 

Fig. 3. The population size for GA and the number of particles for the PSO are both 6, so each increment in the 
horizontal axis corresponds to 6 additional evaluations of the fitness function. Because the number of evaluations of 
the objective function at each temperature for SA is not fixed, we use the total numbers of evaluations of SA divided 
by 6 as the horizontal axis to make a fair comparison. It is observed that in this particular case the PSO converges 
much faster than the other two methods. 

5. Summary 

We have demonstrated the successful optimization of an optical negative index material (NIM) design through three 
different stochastic optimization tools; genetic algorithms (GA), particle swarm optimization (PSO) and simulated 
annealing (SA). SA gives a maximum figure of merit 3.79. A maximum fitness (figure of merit) parameter ( /n n′ ′′− ) 
of 3.25 was obtained through GA after 87 generations, where each generation had 6 individuals. With PSO, a fitness 
parameter of 3.23 is obtained after only 35 iterations with 6 particles. PSO is found to be the most efficient. 

This work was supported in part by ARO grant W911NF-04-1-0350, NSF-NIRT award ECS-0210445, ARO-
MURI award 50342-PH-MUR, the Penn State Materials Research Institute, and by the Penn State MRSEC under 
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